Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; : 1-20, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38165434

RESUMO

Honey-iQfood is an herbal supplement made of a mixture of polyherbal extracts and wild honey. The mixture is traditionally claimed to improve various conditions related to brain cells and functions including dementia and Alzheimer's disease. Glycogen synthase kinase-3 beta (GSK-3ß) and cyclin-dependent kinase 5 (CDK5) have been identified as being involved in the pathological hyperphosphorylation of tau proteins, which leads to the formation of neurofibrillary tangles and causes Alzheimer's disease. Therefore, this study was conducted to confirm the traditional claims by detection of active compounds, namely curcumin, gallic acid, catechin, rosmarinic acid, and andrographolide in the raw materials of Honey-iQfood through HPLC analysis, molecular docking, and dynamic simulations. Two potential compounds, andrographolide, and rosmarinic acid, produced the best binding affinities following the molecular docking of the active compounds against the GSK-3ß and CDK5 targets. Andrographolide binds with GSK-3ß at -8.2 kcal/mol, whereas rosmarinic acid binds to CDK5 targets at -8.6 kcal/mol. Molecular dynamics was further carried out to confirm the docking results and clarify their dynamic properties such as RMSD, RMSF, rGyr, SASA, PSA, and binding free energy. CDK5-andrographolide complexes had the best MM-GBSA score (-83.63 kcal/mol) compared to other complexes, indicating the better interaction profile and stability of the complex. These findings warrant further research into andrographolide and rosmarinic acid as efficient inhibitors of tau protein hyperphosphorylation to verify their therapeutic potential in brain-related illnesses.Communicated by Ramaswamy H. Sarma.

2.
Nanomaterials (Basel) ; 12(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35159718

RESUMO

Using a simple approach, silver nanoparticles (Ag NPs) were synthesized from green coffee bean extract. The optical color change from yellowish to reddish-brown of the green-produced Ag NPs was initially observed, which was confirmed by the UV-Visible spectrophotometer's surface plasmonic resonance (SPR) bands at 329 and 425 nm. The functional groups of green coffee-capped Ag NPs (GC-capped Ag NPs) were studied using a Fourier transform infrared spectrometer, revealing that Ag NPs had been capped by phytochemicals, resulting in excellent stability, and preventing nanoparticle aggregation. The presence of elemental silver is confirmed by energy dispersive X-ray analysis. In addition to the measurement of the zeta potential of the prepared GC-capped Ag NPs, the size distribution is evaluated by the dynamic light scattering. Depending on the nano-morphological study, the particle diameter of Ag NPs is 8.6 ± 3.5 nm, while the particle size of GC-capped Ag NPs is 29.9 ± 4.3 nm, implying the presence of well-dispersed nanospheres with an average capsulation layer of thickness 10.7 nm. The phyto-capped Ag NPs were found to be crystalline, having a face-centered cubic (FCC) lattice structure and Ag crystallite size of ~7.2 nm, according to the XRD crystallographic analysis. The catalytic performance of phyto-capped Ag NPs in the removal of methylene blue dye by sodium borohydride (NaBH4) was investigated for 12 min to reach a degradation efficiency of approximately 96%. The scavenging activities of 2,2-Diphenyl-1-picrylhydrazyl (DPPH) free radicals are also examined in comparison to previously reported Ag-based nano-catalysts, demonstrating a remarkable IC50 of 26.88 µg/mL, which is the first time it has been recorded.

3.
Int J Mol Sci ; 21(11)2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-32486229

RESUMO

The novel coronavirus, COVID-19, caused by SARS-CoV-2, is a global health pandemic that started in December 2019. The effective drug target among coronaviruses is the main protease Mpro, because of its essential role in processing the polyproteins that are translated from the viral RNA. In this study, the bioactivity of some selected heterocyclic drugs named Favipiravir (1), Amodiaquine (2), 2'-Fluoro-2'-deoxycytidine (3), and Ribavirin (4) was evaluated as inhibitors and nucleotide analogues for COVID-19 using computational modeling strategies. The density functional theory (DFT) calculations were performed to estimate the thermal parameters, dipole moment, polarizability, and molecular electrostatic potential of the present drugs; additionally, Mulliken atomic charges of the drugs as well as the chemical reactivity descriptors were investigated. The nominated drugs were docked on SARS-CoV-2 main protease (PDB: 6LU7) to evaluate the binding affinity of these drugs. Besides, the computations data of DFT the docking simulation studies was predicted that the Amodiaquine (2) has the least binding energy (-7.77 Kcal/mol) and might serve as a good inhibitor to SARS-CoV-2 comparable with the approved medicines, hydroxychloroquine, and remdesivir which have binding affinity -6.06 and -4.96 Kcal/mol, respectively. The high binding affinity of 2 was attributed to the presence of three hydrogen bonds along with different hydrophobic interactions between the drug and the critical amino acids residues of the receptor. Finally, the estimated molecular electrostatic potential results by DFT were used to illustrate the molecular docking findings. The DFT calculations showed that drug 2 has the highest of lying HOMO, electrophilicity index, basicity, and dipole moment. All these parameters could share with different extent to significantly affect the binding affinity of these drugs with the active protein sites.


Assuntos
Antivirais/farmacologia , Cisteína Endopeptidases/química , Simulação de Acoplamento Molecular , Inibidores de Proteases/farmacologia , Proteínas não Estruturais Virais/química , Amidas/química , Amidas/farmacologia , Amodiaquina/química , Amodiaquina/farmacologia , Antivirais/química , Sítios de Ligação , Proteases 3C de Coronavírus , Cisteína Endopeptidases/metabolismo , Inibidores de Proteases/química , Ligação Proteica , Pirazinas/química , Pirazinas/farmacologia , Ribavirina/química , Ribavirina/farmacologia , Proteínas não Estruturais Virais/metabolismo
4.
Molecules ; 24(3)2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30736403

RESUMO

An efficient microwave-assisted one-step synthetic route toward Mannich bases is developed from 4-hydroxyacetophenone and different secondary amines in quantitative yields, via a regioselective substitution reaction. The reaction takes a short time and is non-catalyzed and reproducible on a gram scale. The environmentally benign methodology provides a novel alternative, to the conventional methodologies, for the synthesis of mono- and disubstituted Mannich bases of 4-hydroxyacetophenone. All compounds were well-characterized by FT-IR, ¹H NMR, 13C NMR, and mass spectrometry. The structures of 1-{4-hydroxy-3-[(morpholin-4-yl)methyl]phenyl}ethan-1-one (2a) and 1-{4-hydroxy-3-[(pyrrolidin-1-yl)methyl]phenyl}ethan-1-one (3a) were determined by single crystal X-ray crystallography. Compound 2a and 3a crystallize in monoclinic, P21/n, and orthorhombic, Pbca, respectively. The most characteristic features of the molecular structure of 2a is that the morpholine fragment adopts a chair conformation with strong intramolecular hydrogen bonding. Compound 3a exhibits intermolecular hydrogen bonding, too. Furthermore, the computed Hirshfeld surface analysis confirms H-bonds and π⁻π stack interactions obtained by XRD packing analyses.


Assuntos
Acetofenonas/química , Acetofenonas/síntese química , Técnicas de Química Sintética , Micro-Ondas , Cristalografia por Raios X , Ligação de Hidrogênio , Modelos Moleculares , Estrutura Molecular , Análise Espectral , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...